

MATH 201 Linear Algebra

Instructor : Assoc. Prof. Dr. Yalçın Ata Assistant :

Mustafa Sami Cücen – Halil Hakan Sarıçiçek

MATH 201 Linear Algebra							
Course Name	Course Code	Semester	h/w	Appl.	Lab. h/w	Credit	ECTS
Linear Algebra	MATH201	2	3	0	0	3	4

Prerequisites	MATH 101
Course Language	English
Course Type	Compulsory
Course Level	Undergraduate
Way of teaching	Online, face to face
Learning and teaching techniques	Expression, question answer, application

Course Objectives

This is an introductory course in linear algebra. The aim of this course is to teach you the mathematical fundamentals of linear algebra in a way that illustrates their relevance to computer science. This is a course in mathematics. But, in it, you will use the mathematical concept to illustrate facts about computers, and you will use computers to help you improve your understanding of the mathematics. You will also see how linear algebra is applied in various areas of computer science.

	Course Educational / Learning Outcomes					
	Course Educational / Learning Outcomes					
Students	who can successfully complete this course;					
1.	Define basic terms and concepts of matrices, vectors and complex numbers					
2	apply the matrix calculus in solving a system of linear algebraic equations					
3	analyze the solution set of a system of linear equations.					
vector s	generalize the concepts of a real (complex) vector space to an arbitrary finite4 dimensional pace.					
5	investigate properties of vector spaces and subspaces using by linear transformations.					

6	determine whether a subset of a vector space is linear dependent.	
7	express linear transformation between vector spaces.	
	represent linear transformations by matrices.	
8		
		9
10		

Topics Covered

Vectors, matrices, linear equations, vector spaces and subspaces, orthogonality, determinants, Eigenvalues and Eigenvectors, linear transformations, complex vectors and matrices, numerical linear algebra.

Weekly Topics and Releated Preparation Studies					
Week	Topics	Preparation			
1	Introduction to vectors, vectors and linear combinations, algebraic properties, lengths and dot products, matrices				
2	Solving linear equations, vectors and linear equations, elimination, row echelon form.				
3	Matrix operations, rules of matrix operations, independence, transposes, inverse matrices, factorization and permutations				
4	Vector spaces and subspaces, null space, dimensions, vector independence				
5	Orthogonality, least squares approximations, orthonormal bases and Gram-Schmidt				
6	Determinants, permutations and cofactors, inverses and volumes				
7	Eigenvalues and eigenvectors, diagonalization, systems of differential equations,				
8	Midterm-1				
9	Symmetric matrices, diagonalization of symmetric matrices, quadratic forms, positive definite matrices				
10	Linear transformations (mapping), the matrix of a linear transformation				

11	Complex vectors and matrices, complex numbers, systems with complex numbers, vector spaces	
12	Midterm-2	
13	Eigenvectors and inner products in complex vector spaces, hermitian matrices and unitary diagonilazation	
14	Final Exam	
15		
16		

Textbook

- G. Strang, Introduction to Linear Algebra, 5th Ed., Wellesly-Cambridge Press, 2016.
- S. Lipschutz and M. Lipson, *Schaum's Outline of Linear Algebra*, 6th Edition. New York: McGraw-Hill Education, 2017.

Assessment System					
Works	Number	Contribution			
Attendance					
Laboratory					
Practice					
Field Study					
Course-Specific Internship (if applicable)					
Quizzes					
Homework					
Presentation					
Project					
Report					
Seminar					
Midterm Exams / Midterm Jury	2	% 60			
Final Exam / Final Jury	1	% 40			
	Total	% 100			
Contribution to the success grade of semester studies		% 60			
Contribution of the studies at the end of semester to the success grade		% 40			
	Total	% 100			

Course Category			
Basic Vocational Courses	X		
Expertise / Field Courses			
Support Courses			
Communication and Management Skills Courses			
Transferable Skill Courses			

The Relationship between Course Learning Outcomes and Program Competencies						
No	Drawam Competencies / Outcomes	Co	Contribution Level			
No	Program Competencies / Outcomes	1	2	3	4	5
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						

ECTS/Workload Table					
Activities	Number	Time (h)	Total Workload		
Course hours (Including exam week: 16 x total weekly course hoursi)	16	3	48		
Laboratory					
Application					
Course specific internship					
Field Study					
Out-of-class study time	16	2	32		
Presentation/Seminar Preparation					
Projects					
Reports					
Homeworks					
Quizzes					
Preparation time for Midterm Exams / Midterm Jury	2	15	30		
Preparation time for Final Exam / Final Jury	1	15	15		
Total Workload	(125/35	= 3.57)	125		